
206050

f

mist: Multispectral Image

Similarity Transformation

Contract Number: NAS 5-3 2 3 5 7

Final Report

VISION BEYOND TOMORROW

Introduction

This document describes work intended to aid in the problem of automatically registering two images of

dissimilar type. This work was performed under NASA contract number NAS5-32357. It was performed

by Sridhar Srinivasan, Carl Stevens, Les Elkins, Radha Poovendran, and Srinivasan Raghavan,.

Registration Algorithms as Implemented in mist Code

The algorithms implemented in this software attempt to determine a transformation from one image to

another. The registration software can be used to register similar or dissimilar multi-sensor imagery as long
as the transformation between this imagery is restricted to rotation, translation, and scaling (collectively

known as a "similarity transformation"). This composite transformation can be expressed as:

[xl] [Tx] [" cos0 sin 01Ix]=s + sL_ sin 0 cos 0JLyJY L

where:

(x',y') is the transformed point in the second image, image2, corresponding to (x,y) in the first

image, imagel,

s is the common scale by which imagel was expanded to create image2,

1"= Ty are the units that imagel was translated in the x and y axes,

0is the angle by which imagel was rotated, and

(x,y) is the source point in the original image.

The algorithms which determine the scale, translation, and rotation of the two images are based on lines

extracted from the original images. By working with these lines rather than the images themselves, the

algorithm can deal with differing types of imagery (visible, IR, AVHRR, etc.).

The algorithm performs five steps:
• Extract edges from image files,

• Extract line segments from edges,

• Determine rotation parameter based on lines segments,

• Determine scale parameter based on line segments, and

• Determine translation parameter based on line segments.

Each of these will be dealt with in greater detail below.

This data is delivered with limited and restricted rights by LNK Corporation Inc. (1997)
1

For more information on mist and related products and services, please contact

LNK Corporation,
6811 Kenilworth Avenue, Suite 306

Riverdale, MD 20737, USA

Phone: (301) 927-3223

FAX: (301) 927-7193

email: info@lnk.com

Visit LNK's web site on the internet at http://www.lnk.com

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in

subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at

DFARS 252.227-7013 or FAR 52.227-14, as applicable.

This data is delivered with limited and restricted rights by LNK Corporation Inc. (1997)
i

Table of Contents

Introduction .. 1

Registration Algorithms as Implemented in mist Code ... 1

Edge Extraction .. 2
Line Segment Extraction ... 2
Determination of the Rotation Parameter .. 3

Determination of the Scale Parameter ... 4

Determination of the Translation Parameter ... 5

C Code Function Description .. 6

register_images ... 6

compare .. 6
compute_rotation .. 6
derotate ... 7
differs .. 7

is_close ... 7

compute_param ... 7
rescale ... 8
Intersection ... 8

max_smooth .. 8

compute_scale ... 8

compute_shift .. 9

image clear ... 9
image free_char .. 9

image allocate_char ... 10

tmage___allocate_float ... 10
image write_pnm .. 10

Image read_pgm_header .. 10

image read_pgm_image ... 11
image alloc ... 11

Image read .. I 1

lmage__ffee .. 11
image follow .. 11

image___canny ... 12

Image thin .. 12
image split .. 12

image trace ... 12

image r2v ... 13

Sample Results .. 14
Performance Summary .. 14

Detailed Summary ... 16

This data is delivered with limited and restricted rights by LNK Corporation Inc. (1997)
ii

Table of Figures

Figure

Figure

Figure
Figure

Figure

Figure

1 Table of Results ... 14

2 First source image: orthol.pgm ... 16

3 Edges in first image ... 17
4 Lines detected in orthol.pgm .. 18

5 Second source image: orthol_r7_s95_t20.pgm ... 19

6 Edges detected in second image .. 20

Figure 7 Lines detected in second image ... 21

Figure 8 Lines from both images ... 22
Figure 9 Angle Difference Histogram .. 23

Figure 10 Lines from both images after derotation .. 24

Figure 11 Scale Difference Histogram ... 25

Figure

Figure
Figure

Figure

Figure
Figure

12 Lines from both images after descaling ... 26
13 Translation Values in X ... 27

14 Translation Values In Y ... 27

15 Lines from both images after detranslation .. 28

16 Second image transformed to correspond to first .. 29
17 Difference image of result and orthol.pgm ... 30

This data is delivered with limited and restricted rights by LNK Corporation Inc. (1997)

111

Edge Extraction

The quality of edges obtained using any given edge detection technique is very critical to the output of the

line extraction algorithm. The desirable features in an edge detection algorithm therefore include:

High detection rates: The probability of missing a valid edge should be low. The probability

of falsely identifying a nonexistent edge should be low as well. The probability of false
alarms, as well as the probability of a missed edge, are both monotonically decreasing
functions in terms of the signal-to-noise ratio. If the noise is assumed to be Gaussian, the

probability of a false alarm is given by the complementary error function, and the probability
of detection is the same function shifted by the square root of the signal to noise ratio. Hence

the property of high detection is equivalent to maximizing the signal to noise ratio for a given
detector.

• Localization of edges: The estimated edge points should be as close as possible to the true

edge points.

• Uniqueness of the edge: The solution to the coordinates of the edge point should be unique at

every point.

Canny I showed that the solution to these three constraints leads to a linear match filter. From numerical
optimizations, Canny also noted that an efficient approximation to the edge function is the derivative of the

Gaussian,

G(x)=ex -

where x is the location of the edge and c_ is the standard deviation of the Gaussian function.

To produce the list of valid edges, the code does the following:

• Computes the separable Gaussian functions in the x and y directions.

• Computes the image gradient.

• Convolves the image gradient with the gradient of the Gaussian.

Generates the edge map by starting at points above a "high" threshold, and connecting to the

points that are above the "low" threshold (in this implementation, "high" is 255 fully
activated, and "low" is one or greater).

Line Segment Extraction

Once the edges are extracted, they must be converted into lines. This is done by grouping valid edge points

that lie along lines and creating line segments. Valid lines are determined by edge density and line length.

i Canny, J., "A Computational Approach to Edge Detection," IEEE Transactions on PAMI, Vol. 8, No. 6,

November 1986, pp. 679-698

This data is delivered with limited and restricted rights by LNK Corporation Inc. (1997)
2

Thismethodgeneratesmanyvalidlinesegments,butwill alsogeneratea numberof spuriousones.
Inclusionofthesesegmentsin theparameterestimationalgorithmswillskewtheestimatedtransformation
parametervalues.It is thereforenecessaryto usethresholdingoperationswhichwill eliminateasmany
spuriouslinesegmentsaspossible.Thecurrentversionof thecodepicksratherpermissiveparameters,
whichnonethelesskeepsthealgorithmfromgeneratingmanyoftheverysmalllines.

Thealgorithmsusedin thefollowingsectionscontaincodethatwill increaseincomputationalcostgreatly
asthenumberof linesusedincreases.Thusoncethelinesaregenerated,it is still desirableto further
reducetheirnumber.Thisisdonebychoosingaminimumlengththresholdbasedonanexaminationof the
histogram.Thethresholdchosenbythecodeasit standsnowis thevalueonequartilefromthelowest
value,thusthreequartersofthelinesremainafterthisadditionalrestriction.

Determination of the Rotation Parameter

Given a set of lines from each image of the pair, we wish to determine the rotation angle needed to rotate

the lines in one image to those in the second. This requirement is complicated by the fact that there may not

be a high degree of correspondence between the two sets of lines, and by the possibility that the two sets of
lines are at different scales and may be shifted spatially. It is therefore desirable to use techniques based on

histogram solutions, which will give us the maximum likelihood solution for the parameter estimation

problems at hand.

The first step in computing the rotation is to determine the direction of each line. The direction is given as

the angle with respect to the x axis, and is constrained to be between (2) and (_2). Then, foreach line

in the first image, the difference in angle to each line in the second image is computed. This then gives us a
list of the difference in direction between all lines in the first file to all lines in the second file. While in

practice the images we have used have contained a manageable number of lines, note that the number of
values stored (number of lines above threshold length in image one times number of lines above threshold

in image two) can get very large, and it may be desirable to increase the length threshold for some images.

To analyze this list, we perform a histogram analysis of the difference values. Since in the problem domain
we are examining implies that we have at least coarse correspondence between the image pair, we typically

assume that the rotational angle between the two images is between -10 degrees and +10 degrees. This
default can be overridden to look for rotational correlation over larger angles. We can then build our

histogram accordingly, ignoring angle differences outside these bounds.

The optimum number of bins in the histogram is a function of the desired accuracy (which implies a small
bin size, and thus a large number of bins) and the amount of data to be examined (with sparse data, bin sizes

too small might not be filled adequately, and thus might give spurious results, implying the need for a small
number of bins). In this implementation, 100 bins are used, giving a bin size of

lO-(-1o)

100
- 0.2

degrees per bin.

The histogram is then filtered by two passes with a (1,2,1) mean filter, and the angle value corresponding to
the bin with the maximum number of entries is chosen as the rotational value. The set of lines

This data is delivered with limited and restricted rights by LNK Corporation Inc. (1997)
3

correspondingto thesecondimageis thenrotatedbythenegativeof thisdeterminedvaluefor further
processing.Thisrotationisperformedaboutthecenteroftheimage.

Determination of the Scale Parameter

Even though lines are robust enough to use as features, some line segments in each image may be broken or

missing altogether due to various reasons (noise, poor contrast, etc.). Hence simple examination of the ratio
of scales of corresponding lines (as we examined the angles of corresponding lines above) is insufficient to

give good results. The method implemented in this project composes the given lines into triangles, and
determines the ratio of the area of the triangles in the first image to the triangles in the second image.

To form the triangles, the list of lines is exhaustively searched. To find a potential triangle from the first

image, three lines from that image, 11, 12, and 13, are chosen such that their directions differ from each other

by more than some angle tolerance 8. In the current implementation, _ is 25 degrees. This prevents

excessively slivered triangles from being considered, as they would have a small area which might skew the

results. Note that we are not looking for actual triangles in the line segments, but rather lines which can be

extended to form triangles for consideration. To find a corresponding triangle in the second image, we find

lines !1', 12', and 13' such that I1', 12', and 13' have directions greater than _ degrees apart, and which

additionally fulfill the requirement that each corresponding line in the two triangles is within some tolerance

_: that is, the direction of !1 and !1' differ by less than 13degrees, 12 and 12' differ by less than 1_degrees,

and 13 and 13' differ by less than 13degrees. 13defaults to ten degrees in the current implementation. Note

that for any triangle in the first image there may be several in the second image that fulfill these

requirements.

Once two sets of lines are found, the area of the triangles they represent must be determined. This is

computed by a determinant:

II 1 1 11 1 (xA= x I x 2 x 3 =, A=-_ 2Y3 -xay2 +x3Yt -xlY3 +xlY2 -x2Yl)

lYl Y2 Y3

where (xl, Y0, (x2, y/), and (x3, Y3) are the coordinates of the vertices of the triangle. This computation is
performed for both triangles. Since the x andy axes in the second image are scaled by s, a triangle from the

first image with area A should have a corresponding triangle in the second image with an area roughly equal
to s2A. Thus the square root of the ratio of a triangle's area in the second image to the area of a

corresponding triangle in the first image will be the scale factor between these triangles. Note that since this

computation depends on the triangle's area only, it is invariant with respect to both translation and rotation.

Also, since particularly small areas in the denominator can skew the results, we ignore small triangles.

With this computation performed on the large number of corresponding triangles present in an image, then a

large number of ratios will be available in a list. We then perform histogram analysis as we did in the case

of rotation to determine the most common scaling factor, except the histograms are built in log space. This
factor is then used to invert the scaling in the line list from the second image, in order to obtain a true

translation estimation, as described next.

This data is delivered with limited and restricted rights by LNK Corporation Inc. (1997)
4

Determination of the Translation Parameter

To find the translation parameters, the algorithm again builds a list of triangles as in the scaling code, this

time using the derotated and descaled lines. The centroid of each triangle is generated by:

A list is then generated of all possible translations between the centers of corresponding triangles. Again

using histogram methods, we determine the x and y values that occur the maximum number of times in the

range of interest. These are the translation values, T,, and Ty.

With all four parameters now known, the code performs the transformation on the second image to rotate,

scale, and translate it to correspond to the first.

This data is delivered with limited and restricted rights by LNK Corporation Inc. (1997)
5

C Code Function Description

This section describes the function names in the C code and the parameters they take and return. In most

cases, the algorithms have been discussed in the previous section.

register_images

register_images makes the calls to the supporting routines to perform the line identification and
correlation.

void register_images (

char *inl,

char *in2,

char *out,

float sigma,

float min_segment,

float max distance,

float thresh,

float rotation_range,

float scale_range,

float shift_range

)

/* primary input file name (pgm file) */

/* secondary input file name (pgm file) */

/* output file name (pgm file) */

/* sigma for canny edge detection */

/* minimum length of poly-line segment */

/* max. distance of poly line from edge */

/* min. line length considered */

/* range of (+/-) permissible rotation */

/* range of scales in percent (+/-) i00 */

/* range of shifts in pixels */

These parameters are primarily passed to the supporting functions. If a zero is passed for any of the

numeric parameters, then default values will be chosen. This function also computes the desired minimum

line length if it is passed a zero for thresh (it chooses the value one quartile into the sorted list of lengths).

compare

compare defines a comparison function for two pointers to floating point values. This function is used

from C's built in qsort function.

int compare (const void *a, const void *b)

This function is not intended to be directly called by the user.

compute_rotation

compute_rotation determines the rotation offset between two sets of lines.

float compute_rotation(float *angl, /* Array of angles for lines in first image */

float *ang2, /* " " " " second */

int dlengthl, /* Number of lines from first image. */

int dlength2, /* ,....... second " */

float *lengthl, /* Length of lines from first image. */

float *length2, /* second " */

float thresh, /* Minimum line length considered. */

float range) /* Max number of degrees rot. considered */

The number returned is the rotation angle (in degrees).

This data is delivered with limited and restricted rights by LNK Corporation Inc. (1997)
6

derotate

derotate performs the derotation.

void derotate (rectlist *indata,

rectlist *outdata,

int dlength,

float rotation)

/* Input line endpoint list. */

/* Destination (rotated) line endpoint list. */

/* Number of lines in the list. */

/* Degrees to rotate the line list. */

Note that the rotation is performed with respect to the center of the image (so the endpoints are translated by

(-1/2 xsize, -1/2 ysize) before rotation, then translated back by the same amount before storage).

differs

differs compares two floating point numbers (angles in degrees).

int differs (float degl,

float deg2)

The function returns one (true) if they are greater than some number of degrees from each other, and zero

(false) if they are not. The difference threshold is defined in the routine as a constant, and is 25 in the

current implementation. This function also deals with wraparound. If it compares, for example, line
segments with angles 2 degrees and 178 degrees, it will treat them as differing by 4 degrees rather than 176.

is_close

is_close compares two floating point numbers (angles in degrees).

int is close (float degl,

float deg2)

The function returns one (true) if they are within some number of degrees of each other, and zero (false) if
they are not. The difference threshold is defined in the routine as a constant, and is 10 in the current

implementation. This function also deals with wraparound, so if it compares, for example, line segments

with angles 2 degrees and 178 degrees, it will treat them as differing by 4 degrees rather than 176.

compute_param

compute_param takes a list of line endpoints and computes the angle and length of each segment.

void compute_param (rectlist *data, /* Input line endpoint list. */

int dlength, /* Number of line segments. */

float *length, /* Returned segment lengths. */

float *ang, /* Returned segment angle (direction). */

float *cosx, /* Returned cosine value of angle. */

float *sinx, /* Returned sine value of angle. _/

This data is delivered with limited and restricted rights by LNK Corporation Inc. (1997)
7

float *px) /* px contains x sin ang - y cos of ang */

This routine computes a number of numeric values for later use, as indicated above.

rescale

rescale will rescale the line endpoints given the data given a scaling factor.

void rescale (rectlist *indata, /* Input line endpoint list. */

rectlist *outdata, /* Output line endpoint list. */

int dlength, /* Number of line segments. */

float scale) /* Scale multiplier. */

The endpoint values are scaled about the origin.

Intersection

intersection will compute the intersection between the two lines specified.

float *intersection (float sinl, /* sine of angle of first line */

float cosl, /* cosine of angle of first line */

float pl, /* intercept representation of first line */

float sin2, /* sine of angle of second line */

float cos2, /* cosine of angle of second line */

float p2) /* intercept representation of second line */

While the use of sine and cosine for each angle overspecifies the line, these numbers have already been
calculated and stored, so it is more efficient to use both. It returns the x and y values of the intersection.

max_smooth

maxsmooth takes a histogram of values, and returns the maximum histogram bin with the maximum value
after smoothing.

int max smooth (int *hist,

int n }

/* The histogram array. */

/* The number of histogram elements. */

The code implements a 1-2-1 filter twice (that is, h, = h,_ l + 2h + h+ t) before choosing the maximum

value.

compute_scale

compute_scale computes the scale between two sets of lines.

This data is delivered with limited and restricted rights by LNK Corporation Inc. (1997)
8

float compute_scale(rectlist *datal,

rectlist *data2,

int dlengthl,

int dlength2,

float *lengthl,

float *length2,

float *cosl,

float *cos2,

float *sinl,

float *sin2,

float *pl,

float *p2,

float *dirl,

float *dir2,

float thresh,

float range)

I, First line endpoint list. */

i. Second line endpoint list. */

i, Number of segments in first line. */

/, Number of segments in second line. */

I* First segment lengths. */

/* Second segment lengths. */

I* First lines' cosine value of angle. */

/* Second lines' cosine value of angle. */

/* First lines' sine value of angle. */

/* Second lines' sine value of angle. */

/* Contains x sin of ang - y cos of ang */

/* Contains x sin of ang - y cos of ang */

/* Second line's direction. */

/* Second line's direction. */

/* Minimum line length considered. */

/* Scale difference considered. */

The number returned is the scale factor in percent (I00.0 is no scaling).

compute_shift

compute_shift computes the x and y translation between sets of lines.

float compute_shift (float *retval,

rectlist *datal,

rectlist *data2,

int dlengthl,

int dlength2,

float *lengthl,

float *length2,

float *cosl,

float *cos2,

float *sinl,

float *sin2,

float *pl,

float *p2,

float *dirl,

float *dir2,

float thresh,

float shift_range)

/* Return val: [0] is x, [i] is y. */

/* First line endpoint list. */

/* Second line endpoint list. */

/* Number of segments in first line. */

/* Number of segments in second line. */

/* First segment lengths. */

/* Second segment lengths. */

/* First lines' cosine value of angle. */

/* Second lines' cosine value of angle. */

/* First lines' sine value of angle. */

/* Second lines' sine value of angle. */

/* Contains x sin of ang - y cos of ang */

/* Contains x sin of ang - y cos of ang */

/* Second line's direction. */

/* Second line's direction. */

/* Minimum line length considered. */

/* Translational difference considered. */

The translation values are returned in retval.

image_clear

image clear clears the elements of the image data structure for later use.

void image clear (image *in) /* in is a pointer to an image data type. */

image__ free_ char

image free_char frees the space allocated to an image with the imageallocate_char routine.

This data is delivered with limited and restricted rights by LNK Corporation Inc. (1997)
9

void image free_char (image *in, /* Image pointer. */

unsigned char **ucmatrix) /* data pointer. */

image_allocate_ char

imageallocate_char allocates a 2d matrix of characters.

unsigned char **imageallocate_char (int cc,

int rr)

The function returns a pointer to the area allocated.

/* Number of columns... */

/* Number of rows. */

image__aflocate_float

imageallocatefloat allocates a 2d array of floating point storage.

float **imageallocate_float (int cc, /* Number of columns... */

int rr) /* Number of rows */

The routine returns a pointer to the allocates space.

image__ write_pnm

image wd__pnm writesapnm _rmatgraphicsfile.

int image write_pnm (image *in,
char *str)

/* Image file to write.

/* Filename. */

*/

The routine returns zero (false) if it cannot write the file, true otherwise.

image__read pgrn_header

image read_pgm_header examines the header of a pgm (portable greymap) format graphics file.

int image read_pgm_header(FILE *fp, /* File pointer to the (open) file. */

int *cc, /* Pointer to returned num of columns. */

int *rr, /* Pointer to returned hum of rows. */

int *ncol) /* Pointer to returned hum of colors. */

The routine returns zero (false) if it cannot read the file header, true otherwise. It also indicates the number

of columns, rows, and colors in the image through the pointers passed to it.

This data is delivered with limited and restricted rights by LNK Corporation Inc. (1997)

10

image read_pgm_image

image read_pgm_image reads the data in a pgm image.

int image read_pgm_image(image *in, /* Pointer to the image data structure. */

char *str) /* Pointer to the filename. */

The routine returns zero (false) if it cannot read the file, true otherwise. The actual data is returned in the

image data structure.

image__alloc

image alloc allocates the memory needed to read the image data in.

int image alloc (image *in, /* Pointer to the image data structure. */

int nc, /* Numnber of colors in the image. */

int cc, /* Number of columns in the image.*/

int rr) /* Number of rows in the image.*/

This routine modifies the image data structures.

image_read

imageread is a wrapper to perform the read. It prints out an informational message in the process.

int imageread(image *in, /* Pointer to the image data structure. */

char *str) /* Pointer to the filename. */

image__free

image free frees the allocated memory associated with the image in question.

void image free (image *in) /* Pointer to the image data structure. */

image_follow

image follow follows a connected edge.

int image follow(int i, /* location "/

int j, /* location */

int low, /* Low threshold "/

int cols, /* Cols in image */

int rows, /* Rows in image "/

unsigned char **data, /* Keep_ track of visited points. */

unsigned char **mag) /* Gradient data (I think). */

This data is delivered with limited and restricted rights by LNK Corporation Inc. (1997)
11

Thisis arecursiveroutine,calledby imagecanny.It attemptsto lookaroundin anareaandtrack
adjacentpoints.

image__canny

imagecanny performs Canny edge detection. This code is modified from the shareware developed by

the Robot Vision Group, University of Edinburgh, U.K. by Bob Fisher, Dave Croft and A Fitzgibbon. The
modifications were made to allow it to work in our environment.

void imagecanny (image *in, /* Original image. */

float s) /* Threshold sigma parameter. */

The results are stored in the image.

image_thin

imagethin is a thinning algorithm for binary images. See 'Image Processing' by Anil K Jain (p383) for
details.

void image thin (image *in) /* in is the (binary) image in question. */

imagesprit

image split is a split function for fitting poly-lines to a list

int imagesplit (LIST *in,

int n,

LIST *out,

float *d array,

float max__dist)

The routine is called from image_trace, and is recursive.

image__ trace

imagetrace is used to find lines.

int imagetrace(image *img,

LIST *list,

int *listlength,

int x0,

int y0,

float max dist)

It is used by image r2v to convert to find the lines in an image.

This data is delivered with limited and restricted rights by LNK Corporation Inc. (1997)
12

image__r2v

image r2v performs the raster to vector conversion.

int image r2v(image *in, /* image w/pixel val of 0/I for edge presence) */

float in_seg, /* Minimum segment threshold. */

float in_dist, /* Maximum distance for thresholded points. */

rectlist *rlptr, /* The line segment endpoints. */

int maxl) /* Maximum number Of lines. */

The routine returns the number of lines identified in the image. The line data is returned in rlptr.

This data is delivered with limited and restricted rights by LNK Corporation Inc. (1997)
13

Sample Results

Performance Summary

The following table documents the algorithm's results on several image pairs.

Original Image Second Image Perceived
Rotation

0.20ortho 1 .pgm ortho l_s95.pgm

orthol s95.pgm orthol.pgm anti,O.40

0_01_ [_ol_ipg_ anti!0,20
o_,t26.pgm o_ol:pgm anfi;O.20

Perceived

Scaling
99_50%

100,50%
,; ,, ,

94.06%

106.31%

Perceived

Translation

I 3:2,2.4
0:0,-0.8

0.8,4.0

0.0,-4.0

26A,-25.6
,25.6,22'4

orthol.pgm

orthol r7 s95.pgm

orthol.pgm

orthol r7 s95.psm

orthol.pgm

orthol_s95_tlO.pgm

anti, 7.00

7,00

7i20

0.20

anti,0.40

99.50% -20.8.-0.8

100.50% 16.8,8.0

_.8,12.8

102i95% _4,-12.8

94.44% -11.2,12.8

105.88% 11.2,-12.8

Figure I Table of Results

Note that 'anti' rotation is counterclockwise.

Image sources: The original image is orthol.pgm, a 1024x1024 image taken from a grayscale orthophoto
obtained from the USGS. The image of an area in Carderock, Maryland, and is 2 meters per pixel. All

other comparison images were generated by the noted transformations:

ortho1_r7.pgm: orthol rotated 7 deg, boundaries clipped and filled by pasting representative image
data into the areas left uncovered by the rotation..

orthol_s95.pgm: orthol scaled to 95% of original size, black (non-filled) boundaries.

orthol_t26.pgm: orthol translated by (26,26), empty area filled.
orthol r7 s95.pgm:orthol rotated 7 deg, then scaled by 0.95; boundaries clipped and filled.

orthol r7 tl0.pgm: orthol rotated 7 deg, then translated by (10,10); boundaries clipped and filled.
orthol s95 tl0.pgm: orthol scaled by 0.95, then translated by (10,10), boundaries clipped and

filled.

orthol r7 s95 t20.pgm: orthol rotated 7 deg, then scaled by 0.95, then translated by (20,20);

boundaries clipped and filled.

Note that most of the results are reasonable. One of the exceptions is the case where the comparison image

was orthol r7 s95.pgm. In this case, the rotation was found accurately, but the scaling was not. Curiously,

when this image was then translated as in orthol r7 s95 t20.pgm, the perceived scaling values were much

This data is delivered with limited and restricted rights by LNK Corporation Inc. (1997)
14

better.Examinationof thehistogramsof relative ratio of areas between the triangles used for scale
determination indicates that in this set of images, the 'correct' scale is not greatly higher than the nearby

scales. Additionally, in the images orthol r7 s95_t20.pgm and orthol r7 s95.pgm the boundaries created
by the transformation were filled in by hand separately in each case. Several lines were found in the hand-

drawn areas in the non-translated image that were not present in the translated image, and these contributed

to the ratio of areas enough to skew the results to a different histogram bin.

This data is delivered with limited and restricted rights by LNK Corporation Inc. (1997)
15

Detailed Summary

In this section, the intermediate results from a single pair of images are presented.

Figure 2 First source image: orthol.pgm

The first image, orthol.pgm, is taken from a larger USGS orthophoto.

This data is delivered with limited and restricted rights by LNK Corporation Inc. (1997)
16

Figure 3 Edges in first image

The above figure shows the edges detected by the Canny operation on the first source image.

This data is delivered with limited and restricted rights by LNK Corporation Inc. (1997)

17

Figure 4 Lines detected in orthol.pgm

The lines detected in the In'st source image are shown above, overlaid on the original.

below threshold are colored red, and the lines used are in green.

The lines that are

This data is delivered with limited and restricted rights by LNK Corporation Inc. (1997)
18

Figure 5 Second source image: orthol r7 s95 t20.pgm

The above image is the second source used for this test. It is a rotated, translated, and scaled version of the

original, with cloned trees filling in the areas around the edges created by shrinking and scaling the original.

This data is delivered with limited and restricted rights by LNK Corporation Inc. (1997)
19

Figure 6 Edges detected in second image

The above figure shows the edges detected by the Canny operation on the first source image.

This data is delivered with limited and restricted rights by LNK Corporation Inc. (1997)
20

Figure 7 Lines detected in second image

The lines detected in the second source image are shown above, overlaid on the original. The lines that are

below threshold are colored red, and the lines used are in blue.

This data is delivered with limited and restricted fights by LNK Corporation Inc. (1997)
21

!/

Figure 8 Lines from both images

The lines from both images are shown together in the above image (green for the first image, blue for the

second). Only line lengths above the threshold are shown.

This data is delivered with limited and restricted rights by LNK Corporation Inc. (1997)
22

700

600

8 5OO

m 300

8 200

100

0

I

Angle Difference In Degrees

Figure 9 Angle Difference Histogram

The above figure shows the smoothed histogram of angle difference values. Based on the peak value in the

bin at -7, this value was chosen to be the rotational angle between images.

This data is delivered with limited and restricted rights by LNK Corporation Inc. (1997)

23

_f

Figure 10 Lines from both images after derotation

The lines from both images are shown again, after the lines in the second image (blue) are rotated to remove

the rotational difference between the two images.

This data is delivered with limited and restricted rights by LNK Corporation Inc. (1997)

24

250000

240000

g
230000

220000
--m

2100o0
3

200000

190000
oo _, _ _ _ _ _ _ _ _ _ _ ,_ ,_ % _ _" _ __.,_.. . ,-_

Scale Difference BetweenTriangles

Figure 11 Scale Difference Histogram

The above figure shows the smoothed histogram of relative scales of the triangles. Based on the peak value

in the bin at 96.16%, this value was chosen to be the scale factor between images.

This data is delivered with limited and restricted rights by LNK Corporation Inc. (1997)
25

7

",\\ \
/

/,/ _-_
--._..'_ ,

/-/

I"):"

/i
rl

I

/"

/
/

Figure 12 Lines from both images after descaling

The line pairs are shown above after compensation for the second image's scaling factor.

This data is delivered with limited and restricted rights by LNK Corporation Inc. (1997)

26

400000

350000

"_ 30000O

250000
g'

200O00

15OOOO
oo

1oo00o

50000

I I I I I I I I

X Translation Differenced Between Triangles

Figure 13 Translation Values in X

The above figure shows the smoothed histogram of the translation values in the X axis between the set of

triangles. Based on the peak at -22.4, this value was chosen to be the translation on the X axis.

350000

3OO0OO

250000
(..)

E

_ 200000

h=

_ 150000

100000

5OOO0

0

Y Translation Differences Between Triangles

Figure 14 Translation Values In Y

The above figure shows the smoothed histogram of the translation values in the Y axis between the set of

triangles. Based on the peak at 23.2, this value was chosen to be the translation on the Y axis.

This data is delivered with limited and restricted rights by LNK Corporation Inc. (1997)

27

\

J /

l!

" it!

_r
1 _..,,__a_'_ r ':

Figure 15 Lines from both images after detranslation

The above image shows the lines after removing the translation factors determined by the program.

This data is delivered with limited and restricted fights by LNK Corporation Inc. (1997)
28

Figure 16 Second image transformed to correspond to first

The above image shows the final result of the process: the second image transformed such that it
corresponds to the first image.

This data is delivered with limited and restricted rights by LNK Corporation Inc. (1997)
29

Figure 17 Difference image of result and orthol.pgm

The difference image between the original and output images is shown above (where white is no difference,
black is maximal difference). The areas of maximum difference are the regions in the output image that

mapped to areas outside the original second image, and so were colored black.

This data is delivered with limited and restricted rights by LNK Corporation Inc. (1997)
30

